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INDUCTIVE THEORY OF SHEAR FLOWS

GIANNI JAIME

Politecnico di Torino, Italy

In the boundary layer past an airfoil four characteristic points follow one
another (Fig. 1):

I the stagnation point at the leading edge
II the point of maximum wall shear-stress

III the point of maximum outer velocity
IV the separation point

Any approximate method for describing the laminar bonndary layer past
airfoils must also describe, as a particular case, the similar laminar flows past
wedges. These last flows fulfill the well known equation of Falkner and Skan1

f" + ff" +
2m (1 - f'2) =
± (1)

where u/U = = f', with f(0) = PO) = 0 and .r( ) = 1; in = x(117/Ud.r
is the only parameter of the outer velocity law U

In the set of such exact profiles the four characteristic points are labeled by
the following values of exponent in:  1, 1/3, 0, — 0.091, respectively.

In the upper part of Fig. 2 these four exact profiles are drawn according to the
numberical solution of Eq. (1) given by Hartree.2 The ordinate is the normalized
velocity = n/17 and the abscissa is by convention = 0 for ,p = 0 and = 1
for (p In the lower part of Fig. 2 the corresponding four shear-stress
profiles are drawn as obtained by mere numerical derivation from velocity
profiles.

SYMBOLS

f = Normalized stream function
F = Auxiliary function
K = Third shape factor
m = Falkner & Skan's parameter
t = Normalized shear-stress

u = Velocity along x-axis

787



788 INTERNATIONAL COUNCIL AERONAUTICAL SCIENCES

U  = Outer velocity
v = Velocity along y-axis
x  = Abscissa
y = Ordinate
a =

= >Linear multiplicators, Eqs. (20), (21), and (22)
=
= Boundary layer thickness
= Displacement thickness

e = Eddy viscosity
0  = Momentum thickness

= Normalized ordinate
X = Linear multiplicator, Eq. (19)
A = Pohlhausen's parameter
p. = Dynamic viscosity
T = Shear-stress

= Normalized velocity

Only for profiles I, II, III the ordinate is the normalized shear-stress t  = T/To

and again the abscissa is by convention = 0 for t  = 1 and = 1 for t  = 1/2;as
for profile IV of separation, having r0= 0, it is enough to say that the ordinate
is proportional to the shear-stress.

Since the equally hachured diagrams of Fig. 2 are actually almost equal, the
following empirical rule arises:

each velocity profile is complementary to the preceding shear-stress
profile.

Otherwise, aside from normalization:
each velocity profile has the shape of the derived preceding one.

rn=0
=- 0.097

Fig. 1. Qualitative picture of the laminar velocity profiles at the four characteristic
points on an airfoil: I, stagnation point; H, ro-max point; III, U-max point; IV, separation
point.



789INDUCTIVE THEORY OF SHEAR FLOWS

o 2

Fig. 2. Laminar normalized velocity profiles and shear-stress profiles at the four charac-

teristic points on an airfoil: I, stagnation point; II, 7-0-max point; III, IT-max point; IV,

separation point.

Such  rule of progressive derivatives  is stated by the following set of equations:

1

SOH + it = 1

'p M + ill = 1

k (Ply + till + 1

(2)

bound to one another because each t is the normalized derivative of the corre-

sponding ço.
Let us now accept the assumption, also implied in Pohlhausen method,' that

the velocity profiles in the boundary layer past an airfoil are shaped exactly as
in the corresponding tangent wedges.

Then the laminar boundary layer behaves like a computer which progressively

derives the stagnation profile; hence the velocity pilofiles are progressively

simplified when passing from the leading edge to the separation point.
Therefore we will start from the simplest profile, i.e., from the shear-stress

profile of separation; thereafter the rule (2), by progressive normalized integra-
tions, will give all the velocity profiles up to the stagnation point.

Let us define now ri = y/b, where b is the boundary layer thickness; of course

in laminar régime t and  yo are bound as follows:

f




=td77 


Let us define, besides, for the separation point, where r0 = 0 but Ty0 O.

try =/(bry0 i.e., tly —>as n 0 


Since the separation profile behaves like a half-wake, an even function for

,piv(n) or an odd function for tiv(ri) may be reasonably assumed. Thus the family
of functions tiv = n(1 — 772)i was tested in the field 0 < i < 5; i = 1 resulted

as the best exponent for describing the separation.
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When tly is so chosen:

tiv = 77(1— 7/2)

from Eq. (3) the  separation profile  is obtained:




soiv = 1 — (1 — g)2(1 + 2riri2) = 2,72




Then the third of rules (2) gives:




tin(1 — 77)2(1 + 27/ + 772)= (1 — 772)2

and from Eq. (3) the  maximum relocity profile  is obtained:




çor77 = 1 — (1 — .77)3 (1 + 977/8 + 377 2/8) =(1577 — 10773+ 3775)/8 


Then the second of rules (2) gives:




t77 =(1 — 77)2 (1 + 977/8 + 3772/8)

and from Eq. (3) the  maximum shear-stress profile  is obtained:




sou = 1 — (1 — 77)4 (1 + 477/5 + n2/5) = (16g —
15,12 + 5,74 776) 5




Then the first of rules (2) gives:




=(1 — 77)4(1 + 477/5 + 772/5)

and from Eq. (3) the  .stagnation profile  is obtained:




= 1 — (1 — 27)5(1 + 527/8 + n2/8)




= (3577 — 1-76772+ :35773 — 777' + 772)/8

At the outer edge (71 = 1) the velocity defect (1 = so) vanishes with decreasing
zeros from the 5th to the ind order, when passing from the stagnation to the
separation point.

On the contrary in the well known set of Pohlhausen profiles:

6 —  t
= (1 — n)2 [1 + 477

A 

12 + A

so = 1 — (1 — 77)3 [1 + ti
6 —6 Al

the velocity defect (1 — so) always has an outer zero of 3rd order.
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According to Pohlhausen:
Eq. (14) with A = — 12 describes the separation profile (IV):

= 1 — (1 — n)3 (1 + 3n) = 6n2 — 8,73 + 3774  (15)

Eq. (14) with A = 0 describes the maximum velocity profile (III):

= 1 — (1 — n)3(1 = 2 — 2n3 + n4 (16)

the maximum shear-stress profile is not recognizable in Eq. (14),
Eq. (14) with A = 7.052 describes the stagnation profile (I):

= 1 — (1 —  77)3(1 — 0.175:3n) (17)

We are able now to calculate the following classical shape-factors:

b*/0 = f (1 — so) dn f 1 so (1 — so) dn

roO/Au = 4,00'f l So (1 — (P)di

(18)

21

K fo so (1 — ) dn]

F = 2[TI-1°-- — K (2 + 0

The numerical results are reported in Table I.
As for the stagnation point, profile (17) succeeds in giving exactly F = 0

because the special value A = 7.052 was chosen ad hoc; whilst profile (12),

lacking available parameters, gives F = — 0.073, i.e., thicknesses (5, 43*, 0,
slightly decreasing versus z at the leading edge. Except for this, the set of pro-

files (6, 8, 10, 12) comes closer to exact results than the set (15, 16, 17) does, and
in particular:

for the maximum velocity point, profile (8) is even better than the already

good profile (16), as Table I shows and Fig. 3 directly confirms,
for the separation point, profile (6) is a strong improvement over profile

(15), as Table I shows and Fig. 4 directly confirms.

TABLE 1

Point . I: Stagnation Point II: ro-Max. Point III: U-Max. Point II IV: Separation l'oint

Eq. (1) (12) (17) (1) (10) (1) (8) (16) I (1)  (6) (15)

.3* /
00/jh

1,000 K

1,000 F

2.227
0.360

85.3

0

2.247 2.308 2.309

0.355 0.332 0.323

92.077.0 I 60.5

—73 0124

2.346 — 2.605

0.312 — 0.220

57.0 — 0.000

129 — 440

2.596 2.554

0.226 0.235

0.000 0.000

452 470

4.034 4.200 3.500

0.000 0.000 0.000

—68.0 —64.5 —156.7

820 800 1,724
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In order to describe all the nuances of pressure gradient, Pohlhausen used
the linear combination (14) of the two profiles (15), (16), namely:

= (1 — X)ço16 )4915 with X = — A/12 (19)

X = 0 and X = 1 again describe maximum velocity and separation profiles;
X < 0 and X > 0 describe accelerated and retarded flows.

4e.

	

2 3
Fig. 3. Laminar velocity profiles at the maximum velocity point, according to: 	
Pohlhausen method, Eq. (16); - - - present method, Eq. (8); exact Blasius solution,

Eq. (1) with m = 0 (abscissa = 1 for io = 0 .5).

cr
1

5

0
0 1 2

Fig. 4. Laminar velocity profiles at the separation point, according to-  Pohlhausen
method, Eq. (15); - - - present method, Eq. (6); --- exact Hartree solution, Eq. (1)
with ni = 0.091 (abscissa = 1 for y, = 0.5).
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On the contrary the rule of progressive derivatives requires different treat-
ments for each range of pressure gradient. Following the model of Eq. (19) we

may describe, but in three steps, all the nuances of pressure gradient:

= (1 —a)(pi açon 0 < a < 1 


= (1 — 13)çoil &HI 0 << 1 


so  = (1 — 7),pm + -rsoiv 0 < < 1 


Figure 5 shows the auxiliary function F(K), parametrically defined by the

last two Eqs. (18):
for the velocity profiles (20), (2I), and (22)
for the velocity profiles (19)
for the exact velocity profiles, according to Eq. (1)

Providing we choose the special value of a giving F =  0, as Pohlhausen did

with A, Eq. (20) could improve the description of the stagnation point. But in

the field of accelerated flows, Eqs. (20), (21) in two steps, do not improve
significantly the results obtained by Pohlhausen in one step only.

A very significant improvement is given instead by Eq. (22) describing the

retarded flows, included between points III and IV. The maximum velocity

and separation profiles, linearly combined in Eq.  (22),  are worth further atten-

tion.

2

ts

X
Ea(15)

1

Eq(6

IS

0

.050D5

Eq17)

Ea 1 1

Eq 12)

Fig. 5. Auxiliary function F(K) according to-  .. Pohlhausen method; - - - present

method; -- exact solution of Eq. (0; I, stagnation point; II, 1-0-max point; III, U-max

point; IV, separation point.
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Profile (6) of separation, only binomial and symmetrical, already proved far
better than profile (15) even though trinomial but not symmetrical (Fig. 4).

Profile (8) of maximum velocity, trinomial and antisymmetrical, already
proved better than profile (16) also trinomial but not antisymmetrical (Fig. 3).

Such observations emphasize the significance of symmetry and antisymmetry
in the boundary layer flows. An interesting framework for all the shear flows
can now be given just on the basis of symmetry and antisymmetry.

The boundary-layer flow is guided to inner side by the rigid wall, while it
is free at outer side. Hence the boundary-layer flow is half-guided or half-free
and must exhibit an intermediate behavior between guided and free flows,
which we shall analyze now.

Poiseuille flow is the symmetrical guided flow, having:

= 77,
2

= 1/ (23)

when seen from an axial observer.
Couette flow is the antisymmetrical guided flow, having:

t  = 1, = (24)

when seen from an axial observer.
Wake flow is the symmetrical free flow, having:

= = 1 - e-'72 (2.5)

Mixing flow is the antisymmetrical flow, having:

t (1, =  erf (26)

Table II summarizes  t  and yo profiles:
of guided flows (23) and (24) in the first column,
of half-guided flows (5), (6) and (7), (8) in the second column,
of free flows (25) and (26) in the third column.

TABLE Il

Guided Flows Half-guided Flows Free Flows

t n n(i - n2)

so C., n2 C
0

2,72 - ,74 1 —  e—n2
5.000*Z,'

i."5.
4.200

ad
..m  3.414
m

roO/AU .(5., o t=. o :.--- 0
K rlo —0.0356 c..,7.r. —0.0645 —0.1350

F  0.498 0.800 1.459

Ir/E1


7081gU

- 3.000

5 0.167
0


0.334

(1 — n2)2 e- n2

	

(15n — 10n3 3n5)/8 erf n

	

1.596 2.414

	

0.226 0.264

	

0 0

	

0.45e 0.528
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The first row of Table II describes the symmetrical flows while the second
row describes the antisymmetrical flows.

t-profiles of the first row can be obtained from the corresponding ones of the
second row:

through multiplication by n in the first column
through normalized derivation in the second column
either through multiplication by n or through normalized derivation in
the third column

Figure 6 shows the six velocity profiles of Table II; each profile is drawn with
its own scale in order to evidence:

on the one hand the identical axial behavior of all symmetrical flows and,
separately, of all antisymmetrical flows
on the other hand, the different outer behavior of guided, half-guided and
free flows

The numerical values of the shape-factors given by Eqs. (18), calculated arid
reported in Table II as well, definitely demonstrate that the boundary-layer
flows not only qualitatively but also quantitatively place themselves between
guided and free flows.

Beside the horizontal and vertical classification on Table II, a diagonal classifi-
cation is interesting too: white squares include stable laminar flows while
hachured squares include unstable laminar flows having inflected velocity
profiles.

bF

Fig. 6. Laminar velocity profiles for symmetrical and antisymmetrical, guided, half-

guided, and free flows: (a) Poiseuille flow;  (b)  separating boundary layer;  (c)  wake flow;
(d)  Couette flow;  (e)  flat-plate boundary layer; (f) mixing flow.
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The rule of progressive derivatives substantially succeeded in improving the
picture of the laminar separating flow, that is unfortunately of a typical unstable
flow.

But the framework given in Table II allows to pass from the laminar flows
to the more interesting turbulent flows.

Figure 7 shows the shear-stress profiles for the six typical flows reported in
Table II, and corresponding to the laminar velocity profiles of Fig. 6.

We will show now that such shear-stress profiles are equally shaped for both
laminar and turbulent flows, providing T (or t) is the sum (or the normalized
sum) of viscous and Reynolds stresses.

Let us consider, first, the simplest case of guided flows.
Regardless of flow régime, the momentum equation:

for Poiseuille flow is Ty = p,, which implies T y or t
for Couette flow is r = 9, which implies constant T or t = 1

Let us now consider the half-guided flows; here the momentum equation is
useless since a priori unknown inertia forces are involved; a direct experimental
verification is needed.

As for the separation point Fig. 8 shows the comparison between:
the exact analytical laminar t-profile according to Hartree (and already
given in Fig. 2),
the experimental turbulent profile, as found by Schubauer and Klebanoff.3

a

Fig. 7. Laminar and turbulent shear-stress profiles for symmetrical and antisymmetrical,
guided, half-guided, and free flows:  (a) Poisueille flow; (b) separating boundary layer;

(c) wake flow; (d) Couette flow; (e) flat-plate boundary layer; (f) mixing flow.
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Since only the shapes are to be compared, the same maximum and the same
slope at the wall were assumed; the agreement is satisfactory.

As for the maximum velocity point (or a flat plate flow), Fig. 9 shows the
comparison between:

the exact analytical laminar t-profile, according to Blasius (and already
given in Fig. 2),
the experimental turbulent profile, as found by Klehanoff.4

o

oo
o

o o

o

0 0

o

o
o

o

o
o

Fig. 8. Comparison between the shear-stress profiles at the separation point, according
to: ---- analytical solution for the laminar flow; o o 0 experimental turbulent flow
(Schubauer and Klebanoff).

00

o

o
. 5

ri

Fig. 9. Comparison between the shear-stress profiles at the point of maximum velocity
(or on a flat plate), according to: -- analytical solution for the laminar flow; o u o
experimental turbulent flow (Klebanoff).
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Since only the shapes are to be compared, the same maximum at the wall
and the same width of half stress were assumed; the agreement is again satis-
factory.

Let us consider, at last, the free flows. Before analyzing the shear-stress pro-
files it is to be underlined that the gaussian velocity profiles:

= 1  e-n2
for wake flow

(27)
= erf for mixing flow

given in the third column of Table II, are exactly the turbulent ones experi-
mentally found by Reichardt' who took profiles (27) as the basis of his inductive
theory of free turbulent flows.

In order to deduce that here, too, the shear-stress profiles are equally shaped
for both laminar and turbulent flows, a little qualitative hypothesis is required;
namely:

the eddy viscosity has to be independent from y as, of course, the kinematic
viscosity is.

Then the equality of velocity profiles, and hence of their first derivatives,
immediately brings about the equality of the transversal shear-stress profiles.

In order to evidence the equality of t-profiles for both laminar and turbulent
flows, we had to apply the following hypothesis, at least for the free turbulent
flows:

T = pat, with Of/a, =  0 (28)

Such hypothesis, even completed with the here unnecessary analysis about.
physical factors affecting E,was first formulated by PrandtP for the free turbulent
flows only; it was extended by Ferrari5 and Clauser6 to the outer region of the
turbulent boundary layer; it was directly justified by Ferrari' and extended to
all regions of free turbulence far from rigid walls.

The following two well established hypotheses:
the total shear-stress profiles are equally shaped for both laminar and
turbulent flows

tlam = tturb (29)

the eddy viscosity is not y-dependent in the regions far from rigid walls

af/ay = 0 (30)

finally and easily allow to characterize the turbulent velocity profiles as well.
Let us start with free turbulent flows. As already stated, the velocity profiles

are the same everywhere for both laminar and turbulent flows. It is noteworthy
that the gaussian profiles e27) only represent the linearized analytical solutions
for the laminar wake (plane or circular) and for the mixing flow.

As for jets, the analytical exact solutions given by Schlichting' for the laminar
flow would give different profiles for plane and circelar jet, both still different
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from gaussian profiles. This difference between analytical laminar jets and experi-




mental turbulent jets shall be explained by keeping in mind that the boundary-




layer theory is inadequate in the outer region, far from the axis, where y» u.

Therefore the experimental evidence that gaussian profiles hold true for all
free turbulent flows, shall rather be taken as a proof that the profiles are gaussian
even in the laminar field, where experimental evidence cannot be reached because
of the well known instability.

Concluding the discussion about free turbulent flows we may state that

w-profiles are again related to laminar or turbulent t-profiles through Eq. (3) :

t
(31)

)

since hypothesis (30) holds true everywhere, lacking rigid walls; in Eq. (31) u

is the velocity measured by an axial observer.
As for the turbulent half-guided flows, the two hypotheses (29), (30) bring

immediately about that only far from the wall the velocity profiles are equally
shaped for both laminar and turbulent flows, namely :

the turbulent velocity profile approaching the separation is again a laminar

separating profile, even though it slips on the wall as was experimentally
proved by Schubauer and tilebanoff3
the turbulent velocity profile at the point of maximum velocity (or on a

flat plate) is again a Blasius laminar profile, even though it slips on the
wall as was stated by Clauser° or by Ferrari' apart from small corrections.

Concluding the discussion about the half-guided turbulent flows we may state
that ço-profiles are again related to laminar or turbulent t-profiles through a
modified form of Eq. (3):

uu + (0) t

u(1) — u±(0) fi
t

Jo

(32)

since hypothesis (30) only holds true far from the wall  (n  > 0); in Eq. (32) u
is the velocity measured by a wall observer and u+(0) symbolizes the equivalent
slip on the wall, actually described by the universal logarithmic law.

As for turbulent guided flows, the two hypotheses (29), (30) bring immediately
about that only far from the two walls the velocity profiles are equally shaped
for both laminar and turbulent flows, namely :

the axial core of a channel or pipe flow is again described by the laminar
Poisueille parabola, even though it slips on the walls as was stated by
Ferrari'
the axial core of a Couette flow is again described by the laminar Couette
straight line, even though it slips on the walls as was experimentally proved
by Reichardt'
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Concluding the discussion about the guided turbulent flows we may state
that (p-profiles are again related to laminar or turbulent t-profiles through a
modified form of Eq. (3) :

t

(33)
u(1) — u+(1)

t dri

since hypothesis (30) only holds true far from the walls ( — 1 < 77 < + 1);
in Eq. (33) u is the velocity measured by an axial observer and u+(1) symbolizes
the equivalent slip on the wall, actually described again by the universal logarith-
mic law.

To conclude in one sentence the discussion about all the turbulent flows, we
state: according to an effective picture given by Clauser for turbulent boundary
layers, all the turbulent velocity profiles of guided, half-guided and free flows
behave like higher-viscosity laminar profiles; but they slip on a lower-viscosity
layer close to the wall, if there is one.

REFERENCES

I. Schlichting, H.,  Boundary Layer Theory,  London, Pergamon Press; Karlsrhue, Verlag G. Braun,
1955.

Hartree, D. R., "On an Equation Occurring in Falkner and Skan's Approximate Treatment of

the Equation of the Boundary Layer," Proc. Cambridge Phil. Soc., vol. 33, part II, 223, 1937.

Schubauer, G. B., and P. S. Klebanoff, "Investigation of Separation of the Turbulent Boundary

Layer," NACA TN 2133, 1950.

Klebanoff, P. S., "Characteristics of Turbulence in a Boundary Layer with Zero Pressure

G radient, NACA TN 3178, 1954.

Ferrari, C., "The Turbulent Boundary Layer in a Compressible Fluid with Positive Pressure

Gradient,-  J. Aernaut. Sri., vol. 18, no. 7, 1951.

Clauser, F. H., "The Turbulent Boundary Layer,- Adrances in Applied Mechanics,  New York,

Academic Press, vol. IV, 1956.

Ferrari, C., "Turbolenza di parete ((' orso sulla teoria della turbolenza),- CIME rarenna,
Libr. Ed. Levrotto e Bella, Torino, 1957.

Reichardt, H., "Gesetzmassigkeiten der geradlinigen turbulenten Couettestromung,-  Milt.

Max Planck Inst.,  no. 22, Gottingen, 1959.




